BiSS Interface

BP1: STANDARD ROTARY ENCODER

Rev A5, Page 1/10

FEATURES

- BiSS Standard Rotary Encoder
- Compatibility within a group
- Standardized data format
- Simple control configuration
- EDS definition for this profile
- Control Position Word (CPW)
- ♦ Combinable with BP3S

APPLICATIONS

- Fast and simple motion controller configuration
- Intelligent absolute rotary encoder

Rev A5, Page 2/10

DESCRIPTION

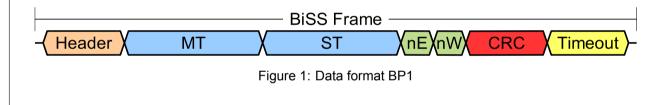
This document describes the profile definition of the BiSS Standard Rotary Encoder Profile BP1 for absolute rotary encoder with BiSS C interface.

The profile defines the data channel parameters and device attributes. This information is placed in the electronic datasheet in a general way and can be implemented easily with the BP1 profile ID on the control side. With the definition of an application specific profile it is possible to define manufacturer independent standardized data communication format for identical devices.

The BiSS Standard Rotary Encoder Profile BP1 is identified with reading the 2 bytes in the register addresses 0x42 and 0x43 to provides the data length and the standardized format.

The BiSS Standard Rotary Encoder provides one position word. The position value transmitted over the BiSS interface is assembled from position value and additional information as are error and warning. The EDS of the BiSS Standard Rotary Encoder has one EDS common part and one EDS BiSS profile specific part: BP1 for position word. The BP1 profile ID can also be used without any additional EDS common part and EDS BiSS profile specific part.

Position


The data length of the position is 12 ... 55 bit.

Error and Warning

Absolute rotary encoders do monitor internal system components and failures. The two feedback bits are transmitted low active: an error or a warning are indicated by a 0. The position value is valid with a warning and may be invalid with an error.

CRC

To increase the transmission reliability the data is extended by a CRC. The CRC is calculated with a standardized generator polynomial and a standardized start value. The CRC bits are transmitted inverted.

BiSS Interface

BP1: STANDARD ROTARY ENCODER

Rev A5, Page 3/10

DEFINITIONS

MT	Multi turn data			
	0, 12 or 24 bit, right aligned, unused bits are set to "0", data has binary format			
ST	Single turn data			
	0, 12 or 24 bit 31 bit, left-aligned, unused bits are set to "0", data has binary format			
R_MT	Multi turn resolution			
	1 to 24 bit, available multiturn information (without fill bits)			
R_ST	Single turn resolution			
	1 to 31 bit, available singleturn information (without fill bits)			
DL_MT	Multi turn data length			
	0, 12 to 24 bit			
DL_ST	Single turn data length			
	0, 12 to 24 31 bit			
nE	Error bit			
	1 bit, inverted transmission position data is void on error			
nW	Warning bit			
	1 bit, inverted transmission position data is valid on warning			
DL	Data length			
	DL_MT + DL_ST + 2, total data length of the data channel			
ID	Identifier			
	BP1 identifier 0x20			
VER	Version			
	BP1 Version			
CRC	Cyclic redundancy check			
	CRC value for data defined by DL			

Table 1: Definitions of data bits in BP1

DATA CHANNEL PARAMETER

The data channel parameter need to be set for the configuration of the BiSS master.

Transmission direction and type	SCDS (Single Cycle Data Sensor)
Number of bits	DL = DL_POS (position data bits) + 2 bit (feedback bits)
Stop bit	1
Data alignment	MT is right-justified with leading zero bits
	ST is left-justified with trailing zero bits
CRC polynomial	$0x43 = X^6 + X^1 + X^0$
CRC start value	0x00

Table 2: Data channel parameters for BP1

Rev A5, Page 4/10

BISS PROFILE IDENTIFICATION

To define a flexible standard with the "BiSS Standard Rotary Encoder Profile", this classification is applied with. For profile identification 2 bytes are provided on register address 0x42 and 0x43 as are **BiSS Profile Identification**.

The measurement data transferred with the BiSS interface is assembled with the number of complete revolutions (multi turn) and the angular information within a revolution (single turn) and additional information about error and warning. The name of the profile variant is defined by the portion of multi turn and single turn data length (e.g. 12-24).

Multiturn

The data length of multi turn is 24 bit or 12 bit (0 bit for single turn encoder). Does the encoder use a different bit count, the measurement value is placed right-aligned and filled with "0".

Singleturn

The data length of single turn is 24 bit or 12 bit. Does the encoder use a different bit count, the measurement value is placed left-aligned and filled with "0".

Resolutions exceeding 24 bit use the actual data length. This is the "24++" variant.

Error and warning

Modern encoder monitor the environmental changes and error. Typical examples are for instance: monitoring aging LED attributes or monitoring angular values to plausibility. Both bits are transmitted low active, error and warning are indicated with "0". The measurement is considered valid with warning and void with error.

CRC

To increase the transmission safety a CRC is extending the data. The CRC value is generated with the start value "0" and the generator polynomial $X^6 + X^1 + X^0$ and the bits are transferred inverted. The data length (containing data, error and warning bits) does not exceed a maximum length of 57 bit. The transferred data (measurement data + CRC) carry a hamming distance of 3 and permit a 2-bit-error detection and a 1-bit-error correction.

The sequence of the data is multi turn, single turn, error, warning and CRC and is transferred completely within a single cycle. Further measurement values e.g. revolution speed, acceleration or temperature are not covered with this profile. They can be transferred with separate data channels and individual profiles. This profile does also not cover incremental encoder.

DATA FORMAT

The following variants are standard applications with maximum single turn resolutions up to 24 bit. The multi turn resolution is defined by the bits 1 and 0 in address 0x42 and the bits 7 to 5 in address 0x43. The single turn resolution results from the bits 4 to 0 in address 0x43 (see examples).

Some variants do have limitations regarding the bit length for R_ST and R_MT:

- 1. Variant 24-12: R_MT minimum is 16 bit
- 2. For the ++ Variants: R_ST minimum is 25 bit:
 - Variant 24-24++: R_ST minimum is 25 bit
 - Variant 12-24++: R_ST minimum is 25 bit
 - Variant 0-24++: R_ST minimum is 25 bit

The following variants are used for special applications with single turn resolutions only.

Variant 0-12	Addr. 0x42	2 A	Addr. 0x43	R MT=0, DL MT=0
Electrical Identifier	0 0 1 0 1 1	100000	0 5 5 5 5	$R_{M} = 0, D_{M} = 0$
Data Format	MT(0) ST	(12) nE(1)	nW(1) CR	C(6) R_MT = 0, R_ST = 112
Variant 0-24	Addr. 0x42	2 A	Addr. 0x43	
Variant 0-24 Electrical Identifier	Addr. 0x42		Addr. 0x43 0 S S S S S S	R_MT = 0, DL_MT = 0 R_ST = SSSSS, DL_ST = 24

The following variants are used for standard applications with multi turn and single turn resolutions.

Variant 12-12	Addr. 0x42	Addr. 0x43	R_MT = MMMM, DL_MT = 12
Electrical Identifier	0 0 1 0 1 0 0 M	M M M 0 S S S S	R_ST = SSSS, DL_ST = 12
Data Format	MT(12) ST(12)	nE(1) nW(1) CRC(6)	R_MT = 112, R_ST = 112
Variant 12-24	Addr. 0x42	Addr. 0x43 M M S S S S nE(1) nW(1) CRC(6)	R_MT = MMMM, DL_MT = 12
Electrical Identifier	0 0 1 0 0 1 0 M		R_ST = SSSSS, DL_ST = 24
Data Format	MT(12) ST(24)		R_MT = 112, R_ST = 124
Variant 24-12	Addr. 0x42	Addr. 0x43 M M 0 S S S nE(1) nW(1) CRC(6)	R_MT = MMMMM, DL_MT = 24
Electrical Identifier	0 0 1 0 0 1 M M		R_ST = SSSS, DL_ST = 12
Data Format	MT(24) ST(12)		R_MT = 1624, R_ST = 112
Variant 24-24	Addr. 0x42	Addr. 0x43 M M S S S S nE(1) nW(1) CRC(6)	R_MT = MMMMM, DL_MT = 24
Electrical Identifier	0 0 1 0 0 0 M M		R_ST = SSSSS, DL_ST = 24
Data Format	MT(24) ST(24)		R_MT = 124, R_ST = 124

Rev A5, Page 6/10

The following variants are used for special applications with multi turn resolutions only.

Variant 12-0	Addr. 0x	x42 A	Addr. 0x43	R MT = MMMM, DL MT = 12
Electrical Identifier	0 0 1 0 1	10MMM	0 0 0 0 0	R ST = 0, DL ST = 0
Data Format	MT(12) 5	ST(0) nE(1)	nW(1) CRC(6)	R_MT = 112, R_ST = 0
Variant 24-0	Addr. 0x	x42 A	Addr. 0x43	
Variant 24-0 Electrical Identifier		x42 A 0 M M M M		R_MT = MMMMM, DL_MT = 24 _ R ST = 0, DL ST = 0

The following variants are used for special applications with single turn resolutions beyond 24 bit. Differing to the first variants the data length results from the bits 3 and 2 in address 0x42 plus the bits 2 to 0 in address 0x43.

Variant 24-24++ Electrical Identifier	Addr. 0x42	Addr. 0x43 M M M S S S S S	R_MT = MMMMM, DL_MT = 24
Data Format	MT(24) ST(24++)	nE(1) nW(1) CRC(6)	R_ST = SSSSS, DL_ST = 2531 R_MT = 124, R_ST = 2531
Variant 12-24++ Electrical Identifier Data Format	Addr. 0x42 0 0 1 0 0 1 0 M MT(12) ST(24++)	Addr. 0x43 M M M S S S S S nE(1) nW(1) CRC(6)	R_MT = MMMM, DL_MT = 12 R_ST = SSSSS, DL_ST = 2531 R_MT = 112, R_ST = 2531
Variant 0-24++ Electrical Identifier Data Format	Addr. 0x42 0 0 1 0 1 0 0 0 MT(0) ST(24++)	Addr. 0x43 0 0 0 S S S S S nE(1) nW(1) CRC(6)	R_MT = 0, DL_MT = 0 R_ST = SSSSS, DL_ST = 2531 R_MT = 0, R_ST = 2531

CALCULATION OF DATA LENGTHS

Calculation of DL (DataLength)

```
if ((REG[0x42] & 0xF0) == 0x20) {
   DL = 12 * (4 - ((REG[0x42] & 0x0C) >> 2)) + 2;
   if ((REG[0x43] & 0x1F) >= 0x018) {
    DL += (REG[0x43] & 0x07);
   }
}
```

Calculation of R_ST and R_MT (single turn and multi turn resolutions)

ELECTRONIC DATA SHEET DEFINITION BP1

The profile EDS contains, depending on the BiSS profile, required information about data transmission, product and process relevant information for the motion control system. Hereto belong mechanical data, accuracy, structure of position words and product attributes. The specification of the first part of the EDS, the BiSS EDS (common) part, is located in the applied BiSS EDS (common part) document.

Addr.	Symbol	Description	Group	Format	Unit	Values
0x00	BP_VER	Version	Orga	U8	-	0x02 0x0E
0x01	BP_LEN	Length of this profile	Orga	U8	Banks	1
0x02 0x03	BP_ID	Profile ID BP1 (same content in addresses 0x42 and 0x43)	Orga	U8 U8	-	0x20 0x2D 0x00 0xFF
0x04	FB1	Feedback bit 1 = error = 1	Orga	U8	Table B	1
0x05	FB2	Feedback bit 2 = warning = 2	Orga	U8	Table B	2
0x06	PON_PDL	Maximum power on delay until process data available	Timing	U8	ms	1 254
0x07		Reserved	Prot	U8	-	0
0x08	EN_TYP	Encoder type = rotary = 0	Orga	U8	Table T	0
0x09	POS_NUM	Position value = position value not defined/re- quired = 0	Safety	U8	Table N	02
0x0A	MT_LEN	Data length MULTITURN (0, 12, 24 bit)	Orga	U8	bit	0 24
0x0B	MT_FMT	Data format MULTITURN = right aligned = 0	Meas	U8	Table F	0
0x0C	CO_LEN	Data length COARSE (0, 12, 24, 31 bit)	Orga	U8	bit	0 31
0x0D	CO_FMT	Data format COARSE = left aligned = 1	Meas	U8	Table F	1
0x0E	FI_LEN	Data length FINE = not used = 0	Orga	U8	bit	031
0x0F	FI_FMT	Data format FINE = not used = 1	Meas	U8	Table F	1
0x10 0x11 0x12 0x13	MT_CNT	Number of distinguishable revolutions / multi turn	Meas	U32 ¹	-	1 2 ³² -2
0x14 0x15 0x16 0x17	SIP_CNT	Number of signal periods per revolution / length of a signal period	Meas	U32 ¹	PPR (rotary) nm (linear)	1 2 ³² -2
0x18 0x19 0x1A 0x1B	SIP_RES	Resolution per signal period (LSB of interpolation)	Meas	U32 ¹	LSB	1 2 ³² -2
0x1C 0x1D 0x1E 0x1F	CPOLY	CRC polynomial (32:1) ${}^3 = X^6 + X^1 + X^0 = 0x43(32:1) = 0x21$	Orga	U32 ¹	-	0x00 0x00 0x00 0x21
0x20 0x21 0x22 0x23	CSTART	CRC start value = 0	Orga	U32 ¹	-	0x00 0x00 0x00 0x00 0x00

BiSS Interface

BP1: STANDARD ROTARY ENCODER

Rev A5, Page 8/10

0x24	ABS_ACU	Absolute accuracy	Meas	U16 ¹	LSB/2	1 2 ¹⁶ -2
0x25						
0x26 0x27	REL_ACU	Relative accuracy	Meas	U16 ¹	LSB/2	1 2 ¹⁶ -2
			Maga		LSB/2	1
0x28 0x29	SPD_ACU	Accuracy depending on rotational speed	Meas	U16 ¹	L3B/2	1 2 ¹⁶ -2
0x23	HYST		Meas	U16 ¹	LSB/2	1
UXZA		Hysteresis	IVIEdS	010	LODIZ	
0x2B						
0x2C	SPD_MAX	Maximum rotational speed / maximum speed	Mech	U16 ¹	1/min	1 2 ¹⁶ -2
0x2D					m/min	
0x2E	ACC_MAX	Maximum angular acceleration / maximum acceleration	Mech	U16 ¹	1/min ²	1 2 ¹⁶ -2
0x2F					m/min ²	
0x30 0x31	TMP_MIN	Minimum operating temperature	Mech	U16 ¹	к	1 2 ¹⁶ -2
			Mech	U16 ¹	ĸ	1
0x32	TMP_MAX	Maximum operating temperature	wech	016	n	1 2 ¹⁶ -2
0x33						
0x34	VLT_MIN	Minimum supply voltage	Elec	U16 ¹	mV	1 2 ¹⁶ -2
0x35						
0x36	VLT_MAX	Maximum supply voltage	Elec	U16 ¹	mV	1 2 ¹⁶ -2
0x37						
0x38	CUR_MAX	Maximum supply current	Elec	U16 ¹	mA	1 2 ¹⁶ -2
0x39						
0x3A		Reserved	Prot	U8	-	0
0x3B		Reserved	Prot	U8	-	0
0x3C		Reserved	Prot	U8	-	0
0x3D		Reserved	Prot	U8	-	0
0x3E		Reserved	Prot	U8	-	0
0x3F	CHKSUM	Check sum (sum of bytes in 0x00 0x3E)	Orga	U8	-	0 255

Table 3: EDS address mapping for BP1

¹⁾ The U16 and U32 values are saved as a Big Endian, i.e. with the highest-value byte at the lowest-value address. ³⁾ The CRC polynomial is stored as a bit pattern (32:1). The "least significant" bit of the CRC polynomial is -on active CRC verification- always 1 and is not stored. So that a CRC check sum with a maximum length of 32 bit is possible. On a deactivated CRC verification the CRC polynomial 0x00000000 is used.

Rev A5, Page 9/10

Table B	Addr; bit	R
Code	Function	
0x00	No function	
0x01	Error bit	
0x02	Warning bit	

Table 4: Bit Function Of Feedback Bits

Table F	Addr; bit	R
Code	Function	
0x00	Right aligned	
0x01	Left aligned	

Table TAddr. ...; bit ...RCodeFunction0x00Angular encoder

Table 6: Encoder Type

Table N	Addr; bit	R
Code	Function	
0x00	Position value number not defined	
0x01	Position value 1	
0x02	Position value 2	

Table 7: Position Value Number

Table 5: Data Format

BP1 in BiSS SAFETY ENCODERS

A BiSS Safety Encoder provides two position words: Control Position Word (CPW) and Safety Position Word (SPW). The CPW of the BiSS Safety Encoders can be described with the BiSS profiles BP1 or BP3. The EDS of the BiSS Safety Encoders has one EDS common part and two EDS BiSS profile specific parts: BP3S for SPW and BP1 or BP3 for CPW.

Rev A5, Page 10/10

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2007-09-20		Initial release	

Rel.	Rel. Date*	Chapter	Modification	Page
A2	2008-12-03		Minor text updates	all

Rel.	Rel. Date*	Chapter	Modification	Page
A3	2010-04-09		Minor text updates	all

Rel.	Rel. Date*	Chapter	Modification	Page
A4	2012-08-13		Minor text updates	all

Rel.	Rel. Date*	Chapter	Modification	Page
A5	2019-03-06	All	Minor text updates	all
		IDENTIFIER SCHEME: BISS PROFILE BP1	Prior CLASSIFICATION renamed	3
		DEFINITIONS	At multiturn data and singleturn data: Data has binary format added	5
		DATA FORMAT	The variant 12-24 and 24-12 are now distinguishable by bit 1 of address 0x42	6
		Examples	Removed, subject for application notes	12 20
		REVISION HISTORY	Revision history chapter format updated	19

iC-Haus expressly reserves the right to change its protocols and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet websites www.ichaus.com/infoletter and www.BiSS-Interface.com/ and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of description and shall represent the usual quality of the protocols. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability. No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the protocols to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the protocols. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to those protocols. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the protocols and/or any other use of the protocols. The protocols and their documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

The protocols described here are multifunctional BiSS interface protocols. The BiSS protocols are protected by patents and registered trademarks owned by iC-Haus GmbH and its application requires the conclusion of a license (free of charge). BiSS is protected by the German process patent DE 10310622 B4 (BiSS C Patent) of iC-Haus GmbH (Licensor), Am Kuemmerling 18, 55294 Bodenheim, Germany. The BiSS Line protocol is protected by patents and further patents pending of the Licensor. Request or download the license at www.biss-interface.com/ . The Licensor grants to Licensee a License to use produced for the application of the BiSS C interface and the the BiSS Line interface. A annihilation or revocation of the BiSS C Patent or the BiSS Patents expires. Any further liability for legal defects is excluded. Governing law is solely and exclusively German law. Regarding all disputes arising in connection with this agreement or its validity the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee is a merchant, a juridical person governed by public law or a public special property with domicile respectively registered office in Germany. Furthermore the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee has got his domicile respectively registered office outside Germany.