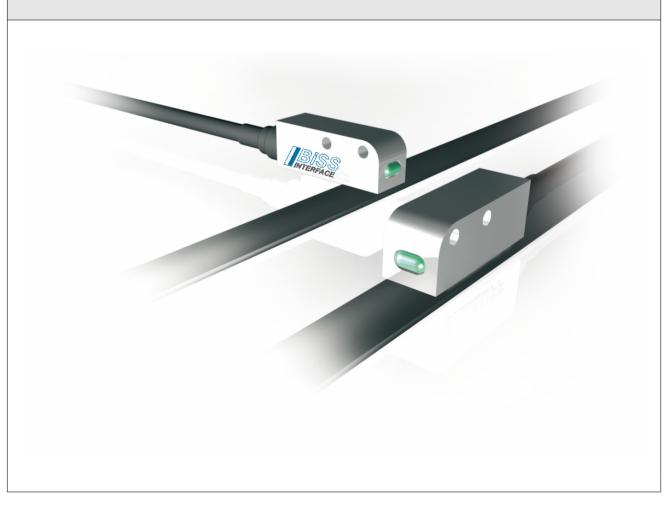
STANDARD ENCODER PROFILE


Rev A3, Page 1/7

FEATURES

- ♦ BiSS Standard Encoder
- ♦ Control Position Word (CPW)
- ♦ Linear and rotary encoder
- ♦ Compatibility within a group
- ♦ Combinable with BP3S
- ♦ Standardized data format
- ♦ Simple control configuration
- ♦ EDS definition for this profile

APPLICATIONS

- ◆ Fast and simple motion controller configuration
- ♦ Intelligent absolute rotary encoder
- Intelligent absolute linear encoder

STANDARD ENCODER PROFILE

DESCRIPTION

This document describes the profile definition of the BiSS Standard Encoder Profile BP3 for absolute linear and absolute rotary encoder with BiSS C interface.

The profile defines the data channel parameters and device attributes. This information is placed in the electronic datasheet in a general way and can be implemented easily with the BP3 profile ID on the control side. With the definition of an application specific profile it is possible to define manufacturer independent standardized data communication format for identical devices.

The BiSS Standard Encoder Profile BP3 is identified with reading the 2 bytes in the register addresses 0x42 and 0x43 to provides the data length and the standardized format. The transmitted data over the BiSS interface assembles from position value and optional additional information as are error and warning information

The BiSS Standard Encoder that provides one position word. The position measure transmitted over the BiSS interface assembles from position value and additional information as are error and warning. The EDS of the BiSS Standard Encoder has one EDS common part and one EDS BiSS profile specific part: BP1 or BP3 for position word.

The BiSS Safety Encoder that provides two position words: Control Position Word (CPW) and Safety Position Word (SPW). The SPW measure transmitted over the BiSS interface assembles from position value and additional information as are error, warning and Sign-Of-Life counter. The CPW measure transmitted over the BiSS interface assembles from position value and additional information as are error and warning. The EDS of the BiSS Safety Encoder has one EDS common part and two EDS BiSS profile specific parts: BP3S for SPW and BP1 or BP3 for CPW.

Position

The data length for the position is 1 . . . 55 bit.

Error and Warning

Modern absolute linear and absolute rotary encoder do monitor internal system components and failures. The two feedback bits are transmitted low active: an error or a warning are indicated by a 0. The measured position is valid with a warning and may be invalid with an error.

CRC

To increase the transmission reliability the data is extended by a CRC. The CRC is calculated with a standardized generator polynomial and a standardized start value. The CRC bits are transmitted inverted.

Figure 1: Data format BP3 (no error)

Definitions

MT	Multiturn
ST	Singleturn
nE	Error bit (low active)
nW	Warning bit (low active)

DL_POS	Position data length MT + ST (1 55 bit)
DL	Total length of the data channel
ID	Identifier
VER	Version
CRC	Cyclic redundancy check

Rev A3, Page 2/7

STANDARD ENCODER PROFILE

Rev A3, Page 3/7

IDENTIFIER SCHEME: BISS PROFILE BP3

OVERVIEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Definition BP3 identifier								
0x42	x42 ID VER C							
0x43	O DL							

Table 1: Register layout

OVERV	OVERVIEW									
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Defined	Defined values of the BP3 identifier									
0x42	0x42									
0x43	0		DL							

Table 2: Register layout

ID	Addr. 0x42; bit 7:4	R
0b0110	Identifier 0b0110 = 0x06 for BiSS Absolute Encoder Profile BP3	
1	bioo Absolute Littodel Fiblie BF3	

Table 3: Identifier

С	Addr. 0x42; bit 0	R
0	CRC is separated from the data. Verification is performed by the BiSS master Not allowed within BiSS Safety Encoder Expected within BiSS Standard Encoder	
1	Mandatory within BiSS Safety Encoder	

Table 5: Cyclic Redundancy Check The bit C indicates if there CRC result is remaining to the data (C = 1) or not (C = 0). If there is no CRC verification by the master required, the count of used CRC bits needs to be added to the count of total data.

VER	Addr. 0x42; bit 3:1	R
0x0	Not allowed	
0x1	Version 1 (current Version)	
0x2 0x7	Reserved for updated versions of BP3	

Table 4: Version

DL	Addr. 0x43; bit 6:0 R
0x00 0x01	Not allowed
0x02 0x39	Data length DL without CRC, with condition C = 0
0x02 0x3F	Data length DL without CRC, with condition C = 1

Table 6: Data length

BP3STANDARD ENCODER PROFILE

Rev A3, Page 4/7

DATA CHANNEL PARAMETER

The data channel parameters need to be set in the BiSS master configuration to access this slaves single cycle data (SCD).

Transmission direction and type	SCDS (Single Cycle Data Sensor)
Number of bits	DL DL = DL_POS (position data bits) + 2 bit (feedback bits), with condition C = 0
Stop bit	1
Processing time	Defined in the EDS BiSS Interface - BiSS_EDS_common_part: TBUSY_S and BUSY_S
Data alignment	right-justified (MT is right-justified with leading zero bits) (ST is left-justified with trailing zero bits)
CRC polynomial	$0x43 = X^6 + X^1 + X^0$, with condition C = 0
CRC start value	0x00

BP3STANDARD ENCODER PROFILE

Rev A3, Page 5/7

ELECTRONIC DATA SHEET DEFINITION BP3

The profile EDS contains, depending on the BiSS profile, required information about data transmission, product and process relevant information for the motion control system. Hereto belong mechanical data, accuracy, structure of position words and product attributes. The specification of the first part of the EDS, the BiSS EDS (common) part, is located in the applied BiSS EDS (common part) document.

Adr.	Symbol	Description	Group	Format	Unit	Values
0x00	BP_VER	BiSS Profile 3 Version	ORGA	U8	-	1
0x01	BP_LEN	Length of this profile	ORGA	U8	Banks	1
0x02	BP_ID	Profile identification BP3 (content also	ORGA	U8	-	0x62
0x03		available in address 0x42 and 0x43)		U8	-	= DL = 1 57
0x04	FB1	Feedback bit 1 low active error status nE	ORGA	U8	Table B	1
0x05	FB2	Feedback bit 2 low active warning status nW	ORGA	U8	Table B	2
0x06	PON_PDL	Maximum "power on delay" until position data are available	TIMING	U8	ms	1 254
0x07		Reserved				
0x08	EN_TYP	Encoder type	ORGA	U8	Table T	0 1
0x09	POS_NUM	Position value	SAFETY	U8	Table N	12
0x0A	MT_LEN	Data length MULTITURN	ORGA	U8	bit	0 57
0x0B	MT_FMT	Data format MULTITURN	MEAS	U8	Table F	0 1
0x0C	CO_LEN	Data length COARSE	ORGA	U8	bit	0 57
0x0D	CO_FMT	Data format COARSE	MEAS	U8	Table F	0 1
0x0E	FI_LEN	Data length FINE	ORGA	U8	bit	0 57
0x0F	FI_FMT	Data format FINE	MEAS	U8	Table F	0 1
0x10	MT_CNT		MEAS	U32 1)	-	1
0x11		Number of distinguishable revolutions/				2 ³² -2
0x12		periods				
0x13						
0x14	SIP_CNT		MEAS	U32 1)	PPR	1
0x15		Number of signal periods per revolution/			(rotary)	2 ³² -2
0x16		length of signal period			nm	
0x17				4)	(linear)	
0x18	SIP_RES		MEAS	U32 ¹⁾	LSB	1
0x19		resolution factor per signal period				2 ³² -2
0x1A		(LSB of the interpolation)				
0x1B	ODOLY/		0004	1100 1)		0.04
0x1C	CPOLY		ORGA	U32 ¹⁾	-	0x21
0x1D		CRC polynomial (32:1) ²⁾				
0x1E						
0x1F	CCTADT		ODCA	1122 1)		0
0x20 0x21	CSTART		ORGA	U32 ¹⁾	-	0
		CRC start value ³⁾				
0x22 0x23						
0x23	ARC ACII		MEAS	U16 ¹⁾	LSB/2	1 2 ¹⁶ -2
0x24 0x25	ABS_ACU	Absolute accuracy	IVIEAS	010 7		1 2 - 2
0x25 0x26	REL_ACU		MEAS	U16 ¹⁾	μm LSB/2	12 ¹⁶ -2
0x26 0x27	REL_ACO	Repeat accuracy	IVIEAS	010 /	LODIZ	12 -2

STANDARD ENCODER PROFILE

Rev A3, Page 6/7

0x28	SPD ACU	Angular speed/	MEAS	U16 1)	LSB/2	12 ¹⁶ -2
0x29	0. 200	speed depending accuracy	10			
0x2A	HYST	Llustoracia	MEAS	U16 1)	LSB/2	1 2 ¹⁶ -2
0x2B		Hysteresis				
0x2C	SPD_MAX	Maximum revolution speed/	MECH	U16 1)	1/min	1 2 ¹⁶ -2
0x2D		maximum speed			m/min	
0x2E	ACC_MAX	Maximum angular accelleration/	MECH	U16 ¹⁾	1/min ²	1 2 ¹⁶ -2
0x2F		maximum acceleration			m/min ²	
0x30	TMP_MIN	Minimum operating temperature	MECH	U16 ¹⁾	K	1 2 ¹⁶ -2
0x31		within operating temperature				
0x32	TMP_MAX	Maximum operating temperature	MECH	U16 ¹⁾	K	1 2 ¹⁶ -2
0x33		Maximum operating temperature				
0x34	VLT_MIN	Minimum operating voltage	ELEC	U16 ¹⁾	mV	1 2 ¹⁶ -2
0x35		within operating voltage				
0x36	VLT_MAX	Maximum operating voltage	ELEC	U16 ¹⁾	mV	1 2 ¹⁶ -2
0x37		Waximum operating voltage				
0x38	CUR_MAX	Maximum current consumption	ELEC	U16 ¹⁾	mA	1 2 ¹⁶ -2
0x39		Maximum current consumption				
0x3A		Reserved				
0x39		1 COOL VCG				
0x3F	CHKSUM	Checksum	ORGA	U8	-	0 255
		(sum of bytes in 0x00 0x3E)				

Table 8: EDS for BP3 address mapping

Table T

0x00

0x01

Table B	Addr ; bit	R
0x00	No function, any value possible	
0x01	Error bit, low active (nE)	
0x02	Warning bit, low active (nW)	

Table 9: Functions of Feedback Bits

Table 11: Encoder Type		
Table N	Addr; bit	R
0×00	Position value not defined	

Addr. . . . ; bit . . .

Rotary encoder

Linear encoder

Table F	Addr ; bit	R
0x00	Right-aligned	
0x01	Left-aligned	

Table 10: Data Format

Table N	Addr; bit	R
0x00	Position value not defined	
0x01	Position value 1	
0x02	Position value 2	

Table 12: Position Value

A Control Position Word (CPW) content of the position values is not restricted. The CPW may be position value 1 or position value 2.

¹⁾ The U32 and U16 values are saved as a Big Endian, i.e. with the highest-value byte at the lowest-value address.

²⁾ The CRC is located 32:1 as least significant bit is on active CRC checking always 1.
³⁾ The CRC start value range is limited by the BiSS Safety Profile Definition.

STANDARD ENCODER PROFILE

Rev A3, Page 7/7

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2015-01-01	All	Initial release	all

Rel.	Rel. Date*	Chapter	Modification	Page
A2	2015-02-02	BISS PROFILE BP3 IDENTIFIER SCHEME	EDS definition, not only EDS BP3	3
		ELECTRONIC DATA SHEET DEFINITION BP3	Added Note: Big Endian for U16, U32	4, 5
			CPOLY = 0x21 CPOLY = 0x8810	4, 5, 7, 9, 11
		EXAMPLE III EDS BP3 CONFORM: ROTARY ENCODER	FBx: error(nE) = 1; warning(nW) = 2	7, 9
		EXAMPLE IV EDS BP3 CONFORM: LINEAR ENCODER	Example IV added	13

Rel.	Rel. Date*	Chapter	Modification	Page
A3	2017-11-24	DESCRIPTION		2
		ELECTRONIC DATA SHEET DEFINITION BP3	Meas replaces Mess	5, 6
		ELECTRONIC DATA SHEET DEFINITION BP3	Table values / ranges updated following definitions of BiSS and BP3.	5, 6
		EXAMPLE I EDS BP3 CONFORM: LINEAR ENCODER	Example moved to BiSS AN application note	7, 8
		EXAMPLE II EDS BP3 CONFORM: LINEAR ENCODER	Example moved to BiSS AN application note	9, 10
		EXAMPLE III EDS BP3 CONFORM: ROTARY ENCODER	Example moved to BiSS AN application note	11, 12
		EXAMPLE IV EDS BP3 CONFORM: LINEAR ENCODER	Example moved to BiSS AN application note	13, 14
		All	Minor text updates	all
		All	BP3S and BiSS Safety information added	all

iC-Haus expressly reserves the right to change its protocols and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet websites www.biss-Interface.com/ and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of description and shall represent the usual quality of the protocols. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or case of only minor impairment of usability. No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the protocols to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the protocols. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to those protocols. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the protocols and/or any other use of the protocols. The protocols and their documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

The protocols described here are multifunctional BiSS interface protocols. The BiSS protocols are protected by patents and registered trademarks owned by iC-Haus GmbH and its application requires the conclusion of a license (free of charge). BiSS is protected by the German process patent DE 10310622 B4 (BiSS C Patent) of iC-Haus GmbH (Licensor), Am Kuemmerling 18, 55294 Bodenheim, Germany. The BiSS Line protocol is protected by patents and further patents pending of the Licensor. Request or download the license at www.biss-interface.com/. The Licensor grants to Licensee a License to use produced for the application of the BiSS C interface and the the BiSS Line interface. Annihilation or revocation of the BiSS C Patent or the BiSS Line Patent does not constitute claims of the User. With termination of the License the permission of the Licensee to use the invention protected by the BiSS Patents expires. Any further liability for legal defects is excluded. Governing law is solely and exclusively German law. Regarding all disputes arising in connection with this agreement or its validity the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee is a merchant, a juridical person governed by public law or a public special property with domicile respectively registered office in Germany. Furthermore the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee has got his domicile respectively registered office outside Germany.

^{*} Release Date format: YYYY-MM-DD