BP3S SAFETY ENCODER PROFILE

Rev A1, Page 1/7

FEATURES

- BiSS Safety Encoder
- ♦ Safety Position Word (SPW) related information
- Linear and rotary encoder
- Compatibility within a group
- Combinable with BP1 and BP3
- Standardized data format
- Simple control configuration
- EDS definition for this profile

APPLICATIONS

- Fast and simple motion controller configuration
- Intelligent absolute rotary safety encoder
- Intelligent absolute linear safety encoder
- BiSS Safety applications
- Safety relevant applications

BLOCK DIAGRAM

BP3S SAFETY ENCODER PROFILE

DESCRIPTION

This document describes the profile definition of the BiSS Safety Encoder Profile BP3S for absolute linear and absolute rotary encoder with BiSS C interface.

The profile defines the data channel parameters and device attributes. This information is placed in the electronic datasheet in a general way and can be implemented easily with the BP3S profile ID on the control side. With the definition of an application specific profile it is possible to define manufacturer independent standardized data communication format for identical devices.

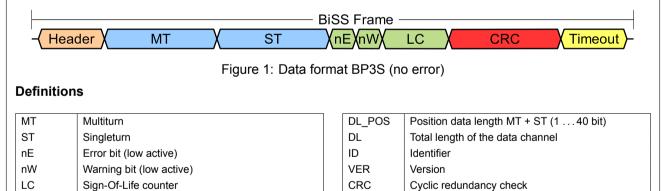
The BiSS Safety Encoder Profile BP3S is identified with reading the 2 bytes in the register addresses 0x42 and 0x43 to provides the data length and the standardized format. The transmitted data over the BiSS interface assembles from position value and optional additional information as are error, warning and Sign-Of-Life counter information.

The BiSS Safety Encoder that provides two position words: Control Position Word (CPW) and Safety Position Word (SPW). The SPW measure transmitted over the BiSS interface assembles from position value and additional information as are error, warning and Sign-Of-Life counter. The CPW measure transmitted over the BiSS interface assembles from position value and additional information as are error and warning. The EDS of the BiSS Safety Encoder has one EDS common part and two EDS BiSS profile specific parts: BP3S for SPW and BP1 or BP3 for CPW.

Position

The data length for the SPW position is 1...40 bit.

Error and Warning


Modern absolute linear and absolute rotary encoder do monitor internal system components and failures. The two feedback bits are transmitted low active: an error or a warning are indicated by a 0. The measured position is valid with a warning and may be invalid with an error.

Sign-Of-Life Counter

With every SCD cycle the Sign-Of-Life counter(LC) counter is incremented. An overflow of the LC counter results in counter value 0x01.

CRC

To increase the transmission reliability the data is extended by a CRC. The CRC is calculated with a standardized generator polynomial and a standardized start value. The CRC bits are transmitted inverted.

Rev A1, Page 3/7

IDENTIFIER SCHEME: BISS PROFILE BP3S

OVERVIEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Definitio	Definition BP3S identifier							
0x42	ID VER C							
0x43	0	0 DL						

Table 1: Register layout

OVERVIEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Defined	Defined values of the BP3S identifier							
0x42	0	1	1	1		VER		С
0x43	0	DL						

Table 2: Register layout

ID	Addr. 0x42; bit 7:4	R
0b0111	Identifier 0b0111 = 0x07 for BiSS Safety Abso Encoder Profile BP3S	olute

Table 3: Identifier

VER	Addr. 0x42; bit 3:1	R
0x0	Not allowed	
0x1	Version 1 (current Version)	
0x2	Reserved for updated versions of BP3S	
0x7		

Table 4: Version

С	Addr. 0x42; bit 0	R
0	CRC is separated from the data. Verification is performed by the BiSS master Not allowed within BiSS Safety Encoder	
1	Mandatory within BiSS Safety Encoder	

Table 5: Cyclic Redundancy Check The bit C indicates if there CRC result is remaining to the data (C = 1) or not (C = 0). If there is no CRC verification by the master required, the count of used CRC bits needs to be added to the count of total data.

DL	Addr. 0x43;	bit 6:0	R
0x00 0x17	Not allowed		
0x18 0x40	Data length DL with	CRC, with condition $C = 1$	

Table 6: Data Length

LC(5:0)	R
01	Counter value after power up depends on the used device and it's definition
0x1	After 0x3F or 0x00, next is 0x02
0x2	After 0x01, next is 0x03
0x3	After 0x02, next is 0x04
	Counting $LC(i+1) = LC(i) + 1$
0x3D	After 0x3C, next is 0x3E
0x3E	After 0x3D, next is 0x3F
0x3F	After 0x3E, next code depends on the used device and it's definition

Table 7: Sign-Of-Life Counter

Rev A1, Page 4/7

DATA CHANNEL PARAMETER

The data channel parameters need to be set in the BiSS master configuration to access this slave's single cycle data (SCD).

Transmission direction and type	SCDS (Single Cycle Data Sensor)
Number of bits	DL DL = DL_POS + 2(feedback bits) + 6(LC bits) + 16(CRC bits), with condition C = 1
Stop bit	1
Processing time	Defined in the EDS BiSS Interface - BiSS EDS common part: TBUSY_S and BUSY_S
Data alignment	right-justified (MT is right-justified with leading zero bits) (ST is left-justified with trailing zero bits)
CRC polynomial	$0x190D9 = X^{16} + X^{15} + X^{12} + X^7 + X^6 + X^4 + X^3 + X^0$, with condition C = 1
CRC start value	0x00 The CRC start value range is limited by the BiSS Safety Profile Definition.

ELECTRONIC DATA SHEET: DEFINITIONS FOR BP3S

The profile EDS contains, depending on the BiSS profile, required information about data transmission, product and process relevant information for the motion control system. Hereto belong mechanical data, accuracy, structure of position words and product attributes. The specification of the first part of the EDS, the BiSS EDS (common) part, is located in the applied BiSS EDS (common part) document.

Adr.	Symbol	Description	Group	Format	Unit	Values
0x00	BP_VER	BiSS Profile BP3S Version	ORGA	U8	-	1
0x01	BP_LEN	Length of this profile	ORGA	U8	Banks	1
0x02	BP_ID	Profile identification BP3S (content also	ORGA	U8	-	0x83
0x03		available in address 0x42 and 0x43)		U8	-	25 64
0x04	FB1	Feedback bit 1	ORGA	U8	Table B	1
		low active error status nE				
0x05	FB28	Feedback bit 28:	ORGA	U8	Table B	5
		low active warning status nW,				
		sign-of-life counter LC(5:0)				
0x06	PON_PDL	Maximum "power on delay"	TIMING	U8	ms	1 254
0.07		until position data are available		110		
0x07		Reserved	0004	U8	Table T	0 1
0x08	EN_TYP	Encoder type	ORGA	U8	Table T	01
0x09	POS_NUM	Position value 2 (SPW)	SAFETY	U8	Table N	12
0x0A	MT_LEN	Data length MULTITURN	ORGA	U8	bit	064
0x0B	MT_FMT	Data format MULTITURN	MEAS	U8	Table F	01
0x0C	CO_LEN	Data length COARSE	ORGA	U8	bit	064
0x0D	CO_FMT	Data format COARSE	MEAS	U8	Table F	01
0x0E	FI_LEN	Data length FINE	ORGA	U8	bit	064
0x0F	FI_FMT	Data format FINE	MEAS	U8	Table F	01
0x10	MT_CNT		MEAS	U32 ¹⁾	-	1
0x11		Number of distinguishable revolutions/				2 ³² -2
0x12		periods				
0x13						
0x14	SIP_CNT		MEAS	U32 ¹⁾	PPR	1
0x15		Number of signal periods per			(rotary)	2 ³² -2
0x16		revolution/length of signal period			nm	
0x17					(linear)	4
0x18	SIP_RES	Develotion for the new size of a start	MEAS	U32 ¹⁾	LSB	1 2 ³² -2
0x19		Resolution factor per signal period (LSB of the interpolation)				202-2
0x1A						
0x1B				1122 1		0,0000
0x1C	CPOLY		ORGA	U32 ¹	-	0xC86C
0x1D 0x1E		CRC polynomial (32:1) ²⁾				
0x1E 0x1F						
	COTADT		ORGA	U32 ¹⁾		0
0x20 0x21	CSTART		UKGA	032 .	-	0
0x21 0x22		CRC start value ³⁾				
0x22 0x23						
0x23 0x24	ABS_ACU		MEAS	U16 ¹⁾	LSB/2	12 ¹⁶ -2
0x24 0x25	ABS_ACU	Absolute accuracy	WEAS			1Z -Z
0,20					μm	

BP3S SAFETY ENCODER PROFILE

preliminary BISS SAFETY

Rev A1, Page 6/7

0x26	REL_ACU	_	MEAS	U16 ¹⁾	LSB/2	12 ¹⁶ -2
0x27	_	Repeat accuracy				
0x28	SPD_ACU	Angular speed/	MEAS	U16 ¹⁾	LSB/2	12 ¹⁶ -2
0x29		speed depending accuracy				
0x2A	HYST	Hysteresis	MEAS	U16 ¹⁾	LSB/2	1 2 ¹⁶ -2
0x2B						
0x2C	SPD_MAX	Maximum revolution speed/	MECH	U16 ¹⁾	1/min	1 2 ¹⁶ -2
0x2D		maximum speed			m/min	
0x2E	ACC_MAX	U U U U U U U U U U U U U U U U U U U	MECH	U16 ¹⁾	1/min ²	1 2 ¹⁶ -2
0x2F		maximum acceleration			m/min ²	
0x30	TMP_MIN	Minimum operating temperature	MECH	U16 ¹⁾	K	1 2 ¹⁶ -2
0x31						
0x32	TMP_MAX	Maximum operating temperature	MECH	U16 ¹⁾	K	1 2 ¹⁶ -2
0x33		Maximum operating temperature				
0x34	VLT_MIN	Minimum operating voltage	ELEC	U16 ¹⁾	mV	1 2 ¹⁶ -2
0x35		winning voltage				
0x36	VLT_MAX	Maximum operating voltage	ELEC	U16 ¹⁾	mV	1 2 ¹⁶ -2
0x37		Maximum operating voltage				
0x38	CUR_MAX	Maximum current consumption	ELEC	U16 ¹⁾	mA	1 2 ¹⁶ -2
0x39						
0x3A - 0x3E		Reserved		U8	-	0
0x3F	CHKSUM	Checksum	Orga	U8	-	0255
		(addition of all bytes in this bank)				

Table 9: EDS for BP3 Address Mapping

¹⁾ The U32 and U16 values are saved as a Big Endian, i.e. with the highest-value byte at the lowest-value address.

- ²⁾ The CRC is located 32:1 as least significant bit is on active CRC checking always 1.
- ³⁾ The CRC start value range is limited by the BiSS Safety Profile Definition.

Table B	Addr; bit	R
0x01	Error bit nE(0), low active	
0x05	Warning bit nW(0), low active; Sign-Of-Life bits LC(5:0)	,

Table 10: Functions of Feedback Bits

Table F	Addr; bit	R
0x00	Right-justified	
0x01	Left-justified	

Table 11: Data Format

Table T	Addr; bit	R
0x00	Rotary encoder	
0x01	Linear encoder	

Table 12: Encoder Type

Table N	Addr; bit	R
0x02	Position value 2 SPW	

Table 13: Position Value

A SPW content of the position values is not restricted. The SPW may be position value 2 or position value 1.

Rev A1, Page 7/7

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2017-11-23	all	Initial release	

iC-Haus expressly reserves the right to change its protocols and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet websites www.ichaus.com/infoletter and www.BiSS-Interface.com/ and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of description and shall represent the usual quality of the protocols. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability. No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the protocols to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the protocols. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to those protocols. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the protocols and/or any other use of the protocols. The protocols and their documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments (www.ichaus.com/EULA).

The protocols described here are multifunctional BiSS interface protocols. The BiSS protocols are protected by patents and registered trademarks owned by iC-Haus GmbH and its application requires the conclusion of a license (free of charge). BiSS is protected by the German process patent DE 10310622 B4 (BiSS C Patent) of iC-Haus GmbH (Licensor), Am Kuemmerling 18, 55294 Bodenheim, Germany. The BiSS Line protocol is protected by patents and further patents pending of the Licensor. Request or download the license at www.biss-interface.com/ . The Licensor grants to Licensee a License to use produced for the application of the BiSS C interface and the the BiSS Line interface. A annihilation or revocation of the BiSS C Patent or the BiSS Patents expires. Any further liability for legal defects is excluded. Governing law is solely and exclusively German law. Regarding all disputes arising in connection with this agreement or its validity the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee is a merchant, a juridical person governed by public law or a public special property with domicile respectively registered office in Germany. Furthermore the courts at Düsseldorf/Germany have got exclusive jurisdiction, if the Licensee has got his domicile respectively registered office outside Germany.